Weak nanoscale chaos and anomalous relaxation in DNA.

نویسنده

  • Alexey K Mazur
چکیده

Anomalous nonexponential relaxation in hydrated biomolecules is commonly attributed to the complexity of the free-energy landscapes, similarly to polymers and glasses. It was found recently that the hydrogen-bond breathing of terminal DNA base pairs exhibits a slow power-law relaxation attributable to weak Hamiltonian chaos, with parameters similar to experimental data. Here, the relationship is studied between this motion and spectroscopic signals measured in DNA with a small molecular photoprobe inserted into the base-pair stack. To this end, the earlier computational approach in combination with an analytical theory is applied to the experimental DNA fragment. It is found that the intensity of breathing dynamics is strongly increased in the internal base pairs that flank the photoprobe, with anomalous relaxation quantitatively close to that in terminal base pairs. A physical mechanism is proposed to explain the coupling between the relaxation of base-pair breathing and the experimental response signal. It is concluded that the algebraic relaxation observed experimentally is very likely a manifestation of weakly chaotic dynamics of hydrogen-bond breathing in the base pairs stacked to the photoprobe and that the weak nanoscale chaos can represent an ubiquitous hidden source of nonexponential relaxation in ultrafast spectroscopy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak chaos, infinite ergodic theory, and anomalous dynamics

This book chapter introduces to the concept of weak chaos, aspects of its ergodic theory description, and properties of the anomalous dynamics associated with it. In the first half of the chapter we study simple one-dimensional deterministic maps, in the second half basic stochastic models and eventually an experiment. We start by reminding the reader of fundamental chaos quantities and their r...

متن کامل

Taming chaotic dynamics with weak periodic perturbations: an elucidation and critique

It has been pointed out that a chaos control technique wherein a weak excitation is added to the system could be useful for the control of friction at the nanoscale. We examine the claim that this technique can achieve chaos control even though the added excitation is weak. We show that this claim is only valid for the particular case of systems with very shallow potential wells. However, the a...

متن کامل

Superdiffusion and Out-of-Equilibrium Chaotic Dynamics with Many Degrees of Freedoms

We study the link between relaxation to the equilibrium and anomalous superdiffusive motion in a classical N-body Hamiltonian system with long-range interaction showing a second-order phase transition in the canonical ensemble. Anomalous diffusion is observed only in a transient out-ofequilibrium regime and for a small range of energy, below the critical one. Superdiffusion is due to Lévy walks...

متن کامل

Anomalous and anisotropic nanoscale diffusion of hydration water molecules in fluid lipid membranes.

We have studied nanoscale diffusion of membrane hydration water in fluid-phase lipid bilayers made of 1,2-dimyristoyl-3-phosphocholine (DMPC) using incoherent quasi-elastic neutron scattering. Dynamics were fit directly in the energy domain using the Fourier transform of a stretched exponential. By using large, 2-dimensional detectors, lateral motions of water molecules and motions perpendicula...

متن کامل

Studies of thermal conductivity in Fermi-Pasta-Ulam-like lattices.

The pioneering computer simulations of the energy relaxation mechanisms performed by Fermi, Pasta, and Ulam (FPU) can be considered as the first attempt of understanding energy relaxation and thus heat conduction in lattices of nonlinear oscillators. In this paper we describe the most recent achievements about the divergence of heat conductivity with the system size in one-dimensional (1D) and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E

دوره 95 6-1  شماره 

صفحات  -

تاریخ انتشار 2017